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Basic Definitions and Theorems on Rings 
 
Definition T1 (Identity): Let 𝑆 be a set with a binary operation ⊛. If for some 𝑒 ∈ 𝑆, 𝑎 ⊛ 𝑒 = 𝑒 ⊛ 𝑎 = 𝑎 for all 𝑎 ∈ 𝑆 
then 𝑒 is called an identity under ⊛.  
 
Theorem T2 (Uniqueness of identity): Let 𝑆 be a set with a binary operation ⊛. If 𝑎 ⊛ 𝑒 = 𝑒 ⊛ 𝑎 = 𝑎 and  
𝑎 ⊛ 𝑓 = 𝑓 ⊛ 𝑎 = 𝑎 for all 𝑎 ∈ 𝑆, then 𝑒 = 𝑓.  
 
Theorem T3 (Uniqueness of inverses): Let 𝑆 be a set with an identity 𝑒 and an associative binary operation ⊛. Let 𝑎 ∈ 𝑆 
and assume 𝑎 ⊛ 𝑏 = 𝑏 ⊛ 𝑎 = 𝑒 as well as 𝑎 ⊛ 𝑐 = 𝑐 ⊛ 𝑎 = 𝑒. Then 𝑏 = 𝑐.  
 
Definition D4 (Ring): A ring is a set of elements with two binary operations, called addition and multiplication, such that: 

 + is closed  
 + is commutative 
 + is associative 
 + has an additive identity, we’ll call it 0 . 
 Everything in 𝑆 has an inverse under +, we call them negatives and use the – symbol. 
 × is closed 
 × is associative 
 × is distributive over + 

 
Theorem T5 (Uniqueness+ of Identity): Let 𝑒 ∈ 𝑅. If 𝑎 + 𝑒 = 𝑎 for some 𝑎 ∈ 𝑅, then 𝑒 = 0 .  
 
Theorem T6 (Double Negation): Let 𝑎 ∈ 𝑅. Then −(−𝑎) = 𝑎. 
 
Theorem T7 (Additive Cancellation): Let 𝑎, 𝑏, 𝑐 ∈ 𝑅. If 𝑎 + 𝑏 = 𝑎 + 𝑐, then 𝑏 = 𝑐.  
 
Theorem T8 (Zero Multiplication): Let 𝑎, 𝑏 ∈ 𝑅. Then 𝑎0 = 0 𝑎 = 0   
 
Theorem T9 (Moving Negatives): Let 𝑎, 𝑏 ∈ 𝑅. Then 𝑎(−𝑏) = (−𝑎)𝑏 = −(𝑎𝑏).  
 
Theorem T10 (Negative Cancellation): Let 𝑎, 𝑏 ∈ 𝑅. Then (−𝑎)(−𝑏) = 𝑎𝑏.  
 
Theorem T11 (Addition Equation): Let 𝑎, 𝑏 ∈ 𝑅. Then 𝑎 + 𝑥 = 𝑏 always has a unique solution. 
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Definition and Theorems on Subrings 
 
Definition D12: Let 𝑅 be a ring and 𝑆 ⊆ 𝑅. 𝑆 is said to be a subring of 𝑅 if 𝑆 is itself a ring with the same operations as 𝑅. 
 
Theorem T13 (Subring criterion): Let 𝑅 be a ring, and 𝑆 a subset of 𝑅. 𝑆 is a subring if and only if all of the following are 
satisfied for all elements 𝑎, 𝑏 ∈ 𝑆: 

1. 𝑆 ≠ ∅ 
2. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 + 𝑏 ∈ 𝑆   (Closed under addition) 
3. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ⋅ 𝑏 ∈ 𝑆   (Closed under multiplication) 
4. 𝑎 ∈ 𝑆 ⇒ −𝑎 ∈ 𝑆   (Closed under additive inverses) 

 
Theorem T14 (Subring criterion, quick): Let 𝑅 be a ring, and 𝑆 a subset of 𝑅. 𝑆 is a subring if and only if all of the 
following are satisfied for all elements 𝑎, 𝑏 ∈ 𝑆: 

1. 𝑆 ≠ ∅ 
2. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 − 𝑏 ∈ 𝑆   (Closed under subtraction) 
3. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ⋅ 𝑏 ∈ 𝑆   (Closed under multiplication) 

 
Theorem T15 (Subring criterion, finite): Let 𝑅 be a ring, and 𝑆 a finite subset of 𝑅. 𝑆 is a subring if and only if all of the 
following are satisfied for all elements 𝑎, 𝑏 ∈ 𝑆: 

1. 𝑆 ≠ ∅ 
2. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 + 𝑏 ∈ 𝑆   (Closed under addition) 
3. 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 ⋅ 𝑏 ∈ 𝑆   (Closed under multiplication) 

 
Theorem T16 (Zero in subring): Let 𝑅 be a ring and 𝑆 a subring of 𝑅. Then 0 = 0 .  
 
Future Theorem That Appears Later: 
Let 𝑅 be a ring and 𝑆 a subring of 𝑅. If 1 ∈ 𝑆, then 𝑆 has unity and 1 = 1 . 
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Definition and Theorems involving 𝟏𝑹 
 
Definition D17 (Unity): Let 𝑅 be a ring. If 𝑅 contains a multiplicative identity, we call 𝑅 a ring with unity. We write 1  to 
denote the identity. 
 
Definition D18 (Multiplicative Inverses): Let 𝑅 be a ring with unity and 𝑎 ∈ 𝑅 be nonzero. If there is some 𝑏 ∈ 𝑅 such 
that 𝑎𝑏 = 1  and 𝑏𝑎 = 1 , then 𝑎 is called invertible or a unit.  
Because of the uniqueness theorem, we may denote such a 𝑏 as 𝑎 .  
 
Theorem T19 (Left and right inverses): Let 𝑅 be a ring with unity and let 𝑎, 𝑏 , 𝑏 ∈ 𝑅. If both 𝑏 𝑎 = 1  and 𝑎𝑏 = 1  
then 𝑏 = 𝑏 . 
(As a corollary 𝑎 is invertible and 𝑏 = 𝑏 = 𝑎 ) 
 
Theorem T20 (one sided inverse is an inverse): Let 𝑅 be a ring with unity and let 𝑎 ∈ 𝑅 be a unit. If 𝑎𝑏 = 1  for some 
𝑏 ∈ 𝑅, then 𝑏 = 𝑎 .  
Similarly if 𝑐𝑎 = 1  for some 𝑐 ∈ 𝑅, then 𝑐 = 𝑎 . 
 
Theorem T21 (Inverse of a product): Let 𝑅 be a ring with unity and let 𝑎, 𝑏 ∈ 𝑅 both be units. The product 𝑎𝑏 is also a 
unit and (𝑎𝑏) = 𝑏 𝑎 . 
 
Theorem T22 (Identity in a subring): Let 𝑅 be a ring and 𝑆 a subring of 𝑅. If 1 ∈ 𝑆, then 𝑆 has unity and 1 = 1 . 
 
Theorem T23 (0≠1): Let 𝑅 be a ring with unity that is not {0 }. Then 0 ≠ 1 .  
 
Definition D24 (Zero divisor): Let 𝑅 be a ring and 𝑎 ∈ 𝑅 be nonzero. If there is some other nonzero 𝑏 ∈ 𝑅 such that 
𝑎𝑏 = 0 then 𝑎 and 𝑏 are called zero divisors. 
 
Theorem T25 (Cancellation) Let 𝑅 be a ring and assume 𝑎 ∈ 𝑅 is not a zero divisor. Let 𝑏, 𝑐 ∈ 𝑅. 

 If 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐. 
 If 𝑏𝑎 = 𝑐𝑎, then 𝑏 = 𝑐.  

 
Theorem T26 (Units and zero divisors): Let 𝑅 be a ring with unity and let 𝑎 ∈ 𝑅. 

 If 𝑎 is a unit, it is not a zero divisor.  
 If 𝑎 is a zero divisor, it is not a unit. 

 
Definition D27 (Nilpotent): Let 𝑅 be a ring and 𝑎 ∈ 𝑅. If there is some positive integer 𝑛 such that  

𝑎 ⋅ 𝑎 ⋅ 𝑎 ⋅ ⋯ ⋅ 𝑎
 

= 0 

then 𝑎 is called nilpotent.  
 
Theorem T28 (Nilpotent and zero divisors) Let 𝑅 be a ring and 𝑎 ∈ 𝑅 be nonzero. If 𝑎 is nilpotent, then 𝑎 is a zero 
divisor. 
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Definition and Theorems involving Integral Domains 

 
Definition D29 (Commutative): Let 𝑅 be a ring. If multiplication is commutative, then the ring is called a commutative ring.  
 
Definition D30 (Integral Domain): Let 𝑅 be a nontrivial ring. If 𝑅 is commutative and has no zero divisors, then 𝑅 is 
called an integral domain. 
 
Theorem T31 (Cancellation): Let 𝑅 be an integral domain. The cancellation laws apply to 𝑅: 
If 𝑎𝑏 = 𝑎𝑐, then 𝑏 = 𝑐 
 
Theorem T32 (Integral Domain Criterion): Let 𝑅 be ring. If the following are satisfied, then 𝑅 is an integral domain.  

1. 𝑅 is commutative 
2. 𝑅 ≠ {0 } 
3. 𝑎𝑏 = 𝑎𝑐 ⇒ 𝑏 = 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑅,  𝑎 ≠ 0 . 

 
Definition D33 (Divides): Let 𝑅 be a commutative ring and let 𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0. If there is some 𝑘 ∈ 𝑅 such that 
𝑏𝑘 = 𝑎, then we say 𝑏 divides a, that 𝑎 is a multiple of 𝑏, and write 𝑏|𝑎. 
 
Theorem T34 (Properties of divides): Let 𝑅 be a commutative ring. As a relation, “divides” is reflexive and transitive in 
that for all 𝑎, 𝑏, 𝑐 ∈ 𝑅: 

1. 𝑎|𝑎  (If 𝑅 has unity) 
2. If 𝑎|𝑏 and 𝑏|𝑐, then 𝑎|𝑐. 

 
Definition D35 (Associates): Let 𝑅 be an integral domain with unity. Let 𝑎, 𝑏 ∈ 𝑅. If 𝑎 = 𝑏𝑢 for some 𝑢 ∈ 𝑅∗, then 𝑎 and 
𝑏 are called associates. 
 
Theorem T36 (Properties of associates): Let 𝑅 be an integral domain with unity. “Being associates” is an equivalence 
relation. In particular for all 𝑎, 𝑏, 𝑐 ∈ 𝑅:  

1. 𝑎 is an associate with 𝑎 
2. If 𝑎 is an associate with 𝑏, then 𝑏 is an associate with 𝑎. 
3. If 𝑎 is an associate with 𝑏 and 𝑏 is an associate with 𝑐, then 𝑎 is an associate with 𝑐.  

 
Theorem T37 (Divides & Associates): Let 𝑅 be an integral domain with unity and let 𝑎, 𝑏 ∈ 𝑅. Then 𝑎 and 𝑏 are 
associates iff both 𝑎|𝑏 and 𝑏|𝑎. 
 
Definition D38 (prime): Let 𝑅 be an integral domain and let 𝑎 ∈ 𝑅 − 𝑅∗ be nonzero. We say that 𝑎 is prime if for all 𝑏, 𝑐 ∈ 𝑅: 
If 𝑎|𝑏𝑐, then 𝑎|𝑏 or 𝑎|𝑐 
 
Definition D39 (Irreducible): Let 𝑅 be an integral domain with unity and let 𝑎 ∈ 𝑅 − 𝑅∗ be nonzero. We say that 𝑎 is 
irreducible if for all 𝑏, 𝑐 ∈ 𝑅: If 𝑎 = 𝑏𝑐, then either 𝑏 ∈ 𝑅∗ or 𝑐 ∈ 𝑅∗ 
 
Theorem T40 (Prime implies Irreducible): Let 𝑅 be an integral domain with unity and let 𝑎 ∈ 𝑅 be prime. Then 𝑎 is also 
irreducible. 
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Definition and Theorems involving Ideals 
Definition D41 (Ideal): Let 𝑅 be a ring and 𝑆 a subring of 𝑅. We call S an ideal if the following are satisfied: 

 𝑟𝑠 ∈ 𝑆 for all 𝑠 ∈ 𝑆 and 𝑟 ∈ 𝑅 
 𝑠𝑟 ∈ 𝑆 for all 𝑠 ∈ 𝑆 and 𝑟 ∈ 𝑅 

 
Theorem T42 (Ideals are subrings): Let 𝑅 be a ring and 𝐼 an ideal of 𝑅. Then 𝐼 is a subring. 
 
Theorem T43 (What is ⟨𝟏𝑹⟩?): Let 𝑅 be a commutative ring with unity. ⟨1 ⟩ = 𝑅 
 
Definition D44 (Prime Ideal): Let 𝑅 be a commutative ring. An ideal 𝑃 of 𝑅 is called a prime ideal if both:  

 𝑃 ≠ 𝑅 
 If 𝑎𝑏 ∈ 𝑃, then either 𝑎 ∈ 𝑃 or 𝑏 ∈ 𝑃 for all 𝑎, 𝑏 ∈ 𝑅.  

 
Definition D45 (Maximal Ideal): Let 𝑅 be a ring with unity. An ideal 𝑀 of 𝑅 is called a maximal ideal if both:  

 𝑀 ≠ 𝑅 
 If 𝐼 ⊇ 𝑀 is an ideal of 𝐼, then either 𝐼 = 𝑀, or 𝐼 = 𝑅. 

 
Theorem T46 (Ideals are contained in a maximal ideal): Let 𝑅 be a ring with unity and 𝐼 an ideal. Then there is some 
maximal ideal 𝑀 such that 𝐼 ⊆ 𝑀. 
 
Theorem T47 (Maximal ⇒ Prime): Let 𝑅 be a commutative ring with unity. Every maximal ideal of 𝑅 is a prime ideal. 
 
Definition D48 (Finitely Generated): Let 𝑅 be a commutative ring and 𝐼 an ideal of 𝑅. We call 𝐼 finitely generated if 
everything in 𝐼 can be written sums and products of things in 𝑅 with things in some finite set {𝑎 , … , 𝑎 }: 

𝐼 = ⟨𝑎 ,  … , 𝑎 ⟩ ≔ {𝑎 𝑟 + 𝑎 𝑟 + ⋯ + 𝑎 𝑟 |𝑟 , … , 𝑟 ∈ 𝑅} 
 
 
Definition D49 (Principal): Let 𝑅 be a commutative ring and 𝐼 an ideal of 𝑅. We call 𝐼 principal and use the notation 
below, if everything in 𝐼 can be written as a multiple of some single element:  

𝐼 = ⟨𝑎⟩ ≔ {𝑎𝑟|𝑟 ∈ 𝑅} 
 
Definition D50 (PID): Let 𝑅 be an integral domain. If every ideal of 𝑅 is principal, we call 𝑅 a principal ideal domain. 
 
Theorem T51 (Connection between principal ideals and divisibility): Let 𝑅 be a commutative ring with unity. Fix two 
elements 𝑎, 𝑏 ∈ 𝑅.  

(a) If 〈𝑎〉 ⊆ 〈𝑏〉, then 𝑎 = 𝑏𝑡 for some 𝑡 ∈ 𝑅. 
(b) If 𝑎 = 𝑏𝑡 for some 𝑡 ∈ 𝑅, then 〈𝑎〉 ⊆ 〈𝑏〉. 

 
Theorem T52 (Connection between principal ideals and the whole ring): Let 𝑅 be a commutative ring with unity and 𝑟 ∈ 𝑅. 

(a) If 〈𝑟〉 = 𝑅, then 𝑟 is a unit.   
(b) If 𝑟 is a unit, then 〈𝑟〉 = 𝑅. 

 
Theorem T53 (Connection between principal ideals and associates): Let 𝑅 be an integral domain with unity and let 𝑟, 𝑠 ∈ 𝑅. 

(a) If 〈𝑟〉 = 〈𝑠〉, then 𝑟 and 𝑠 are associates.  
(b) If 𝑟 and 𝑠 are associates, then 〈𝑟〉 = 〈𝑠〉.  
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Definition and Theorems involving ideals and quotient rings 
 
Definition D54 (Coset): Let 𝑅 be a ring, 𝑆 a subring of 𝑅, and 𝑎 ∈ 𝑅. The set “𝑆 + 𝑎” is called the “ath coset of S in R” 

 𝑆 + 𝑎 ≔ {𝑠 + 𝑎|𝑠 ∈ 𝑆} 
 
Definition D55 (𝑹 mod 𝑰): Let 𝑅 be a commutative right with identity and 𝐼 an ideal. The quotient ring of 𝑅 mod 𝐼 is the 
collection of cosets of 𝐼 as below, and addition and multiplication are defined as follows. 

𝑅 𝐼⁄ ≔ {𝐼 + 𝑟|𝑟 ∈ 𝑅} 
(𝐼 + 𝑟 ) + (𝐼 + 𝑟 ) ≔ 𝐼 + (𝑟 + 𝑟 ) 

(𝐼 + 𝑟 )(𝐼 + 𝑟 ) ≔ 𝐼 + (𝑟 𝑟 ) 
 
Theorem T56 (Basic properties of 𝑹 𝑰⁄ ): Let 𝑅 be a commutative right with unity and 𝐼 an ideal.  

1. 𝐼 + 𝑎 = 𝐼 + 𝑏 iff 𝑎 − 𝑏 ∈ 𝐼 
2. Addition of cosets is well defined.  
3. Multiplication of cosets is well defined. 
4. 𝑅 𝐼⁄  is a ring. 

 
Theorem T57 (Relating quotient rings to prime ideals): Let 𝑅 be a commutative ring with unity and 𝐼 an ideal of 𝑅. The 
quotient ring 𝑅 𝐼⁄  is an integral domain if and only if 𝐼 is prime. 
 
Future Theorems That Appears Later: 
Let 𝑅 be a commutative ring with unity. and 𝐼 an ideal of 𝑅. The quotient ring 𝑅 𝐼⁄  is a field if and only if 𝐼 is maximal. 
Let 𝑅 be a commutative ring with unity. 𝑅 is a field if and only if its only ideals are {0} and 𝑅 itself.  
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Definition and Theorems involving Unique Factorization Domains 
 
Definition D58 (Irreducible): Let 𝑅 be an integral domain with unity and let 𝑎 ∈ 𝑅 − 𝑅∗ be nonzero. We say that 𝑎 is 
irreducible if for all 𝑏, 𝑐 ∈ 𝑅: If 𝑎 = 𝑏𝑐, then either 𝑏 ∈ 𝑅∗ or 𝑐 ∈ 𝑅∗ 
 
Definition D59 (Irreducible Factorization): Let 𝑅 be an integral domain with unity and let 𝑎 ∈ 𝑅. If we can write 𝑎 =

𝑝 𝑝 ⋯ 𝑝  for some 𝑛 ∈ ℕ where each 𝑝  is irreducible, then we say that 𝑎 has an irreducible factorization. 
 
Definition D60 (Uniqueness): Let 𝑅 be an integral domain with unity and let 𝑎 ∈ 𝑅 have an irreducible factorization.  
Suppose we can write  

𝑎 = 𝑝 𝑝 ⋯ 𝑝  
𝑎 = 𝑞 𝑞 ⋯ 𝑞  

for some 𝑛, 𝑚 ∈ ℕ where each 𝑝  and 𝑞  are irreducible. We say that the factorization is unique up to associates if 𝑛 =

𝑚 and there is some re-numbering of the factors so that 𝑝 = 𝑞  for each 𝑘.  
 
Definition D61 (UFD): Let 𝑅 be an integral domain with unity. If every nonzero nonunit element of 𝑅 has a unique 
factorization, we call 𝑅 a Unique Factorization Domain.  
 
Theorem T62 (Irreducible ⇒ Prime): Let 𝑅 be a unique factorization domain. Then any element of 𝑅  is prime iff it is 
irreducible. 
 
Theorem T63 (GCD from factorization): Let 𝑅 be a unique factorization domain. Then gcd(𝑎, 𝑏) may be computed by 
taking their prime factorizations and looking at what is in common. 
 
Theorem T64 (PID ⇒ UFD): Let 𝑅 be a principal ideal domain. Then 𝑅 is a unique factorization domain.  
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Definition and Theorems involving Euclidean Domains 

 
Definition D65 (Norm): Let 𝑅 be an integral domain with unity. A function 𝑁: 𝑅 → ℕ with 𝑁(0 ) = 0 is called a norm. 
Remark: This is very different from the notion of a norm in other subjects such as advanced calculus. 
 
Definition D66 (ED): Let 𝑅 be an integral domain with unity. We call 𝑅 a Euclidean Domain if there is a norm 𝑁 on 𝑅 
such that for any two elements 𝑎, 𝑏 ∈ 𝑅 with 𝑏 ≠ 0, there exists 𝑞, 𝑟 ∈ 𝑅 such that: 

𝑎 = 𝑞𝑏 + 𝑟 
𝑟 = 0  or 𝑁(𝑟) < 𝑁(𝑏) 
 
Theorem T67 (EA, EEA): Let 𝑅 be a Euclidean Domain. Both the Euclidean Algorithm and Extended Euclidean Algorithm 
can be used in 𝑅.  
 
Theorem T68 (ED⇒PID): Let 𝑅 be a Euclidean Domain. Then 𝑅 is a principal ideal domain. 
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Definition and Theorems involving Fields 
 
Definition D69 (Field): Let 𝑅 be an integral domain with unity. If every nonzero element of 𝑅 is invertible, 𝑅 is called a 
field.  
 
Theorem T70 (ℤ𝒏 vs ℤ𝒑): The ring ℤ  is a field if and only if 𝑛 is prime, in which case we typically use 𝑝 instead of 𝑛.  
 
Theorem T71 (No zero divisors): Let 𝑅 be a field. Then 𝑅 does not have any zero divisors, irreducibles, or primes. 
 
Theorem T72 (Finite ID): Let 𝑅 be a finite integral domain. Then 𝑅 is a field. 
Note: This applies even if we don’t assume R has unity, but the proof is a bit more involved than our proof that assumed unity. 

 
Theorem T73 (Fields and Quotient Rings): Let 𝑅 be a commutative ring with unity and 𝐼 an ideal of 𝑅. The quotient ring 
𝑅 𝐼⁄  is a field if and only if 𝐼 is maximal. 
 
Theorem T74 (Ideals in Fields): Let 𝑅 be a commutative ring with unity. 𝑅 is a field if and only if its only ideals are {0} 
and 𝑅 itself.  
 
Theorem T75 (Field ⇒ ED): Let 𝐹 be a field. Then 𝐹 is also a Euclidean Domain. 
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Definition and Theorems specific to polynomial rings, 𝑹[𝒙], not covered in the abstract theory 

 
Let 𝑅 be a commutative ring and 𝐹 a field in all of the following. 
 
Definition D76: Let 𝑅 be a ring and 𝑓 ∈ 𝑅[𝑥]. Write 𝑓 = 𝑎 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥  where 𝑎 ≠ 0.  

 𝑓 is called a polynomial. 
 𝑛 is called the degree of 𝑓. 

o Unless 𝑓 = 0 in which case deg(𝑓) ≔ −∞ 
 Each 𝑎  is called a coefficient.  
 Each 𝑎 𝑥  is called a term.  

  
Definition D77: Let 𝑓 = ∑ 𝑎 𝑥  and 𝑔 = ∑ 𝑏 𝑥  denote some arbitrary 𝑓, 𝑔 ∈ 𝑅[𝑥]. Then: 

 𝑓 + 𝑔 ≔ ∑ (𝑎 + 𝑏 )𝑥
( , )  

 𝑓𝑔 ≔ ∑ 𝑎 𝑥 ∑ 𝑏 𝑥  
 
Theorem T78: Conditions as above. 

 𝑓𝑔 = ∑ ∑ 𝑎 𝑏 𝑥  

 𝑓𝑔 = ∑ ∑ 𝑎 𝑏 𝑥  
 
Definition D79: Let 𝑓 ∈ 𝑅[𝑥]. If 𝑓 ∈ 𝑅, we call 𝑓 a constant polynomial.  
 
Theorem T80: Let 𝑎, 𝑓 ∈ 𝐹[𝑥] such that 𝑎 is a constant polynomial. Then 𝑎|𝑓. 
 
Definition D81: Let 𝑓 ∈ 𝑅[𝑥] and 𝑎 ∈ 𝑅. If 𝑓(𝑎) = 0 then 𝑎 is called a root of 𝑓.  
 
Theorem T82: Let 𝑓 ∈ 𝐹[𝑥] and 𝑎 ∈ 𝐹. Then (𝑥 − 𝑎)|𝑓 if and only if 𝑎 is a root of 𝑓.  
 
Theorem T83: Let 0 ≠ 𝑓 ∈ 𝐹[𝑥] have degree 𝑛. Then 𝑓 has at most 𝑛 roots 
 
Theorem T84 (Gauss’s Lemma): Let 𝑓 ∈ ℤ[𝑥]. If 𝑓 is reducible in ℚ[𝑥], then 𝑓 is reducible in ℤ[𝑥].  
 
Theorem T85 (Rational Root Theorem): Let 𝑓 ∈ ℤ[𝑥], and write 𝑓 = 𝑎 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 . If 𝑝,  and 𝑞 are coprime 

integers such that 𝑓 = 0, then 𝑞|𝑎  and 𝑝|𝑎 . 

Theorem T86 (Eisenstein’s Criterion): Let 𝑓 ∈ ℤ[𝑥], and write 𝑓 = 𝑎 + 𝑎 𝑥 + ⋯ + 𝑎 𝑥 . Let 𝑝 be a prime number such that: 
 𝑝|𝑎  for 𝑘 = 0,  1,  2,  … , 𝑛 − 1. 
 𝑝 ∤ 𝑎 . 
 𝑝 ∤ 𝑎  

Then 𝑓 is irreducible 
 
Theorem T87: Let 𝑓 ∈ ℚ[𝑥] or 𝑓 ∈ ℤ[𝑥] be a polynomial of degree at most 3. Then 𝑓 is reducible if and only if 𝑓 has a 
root in ℚ. 
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Definition and Theorems specific to power series rings, 𝑹⟦𝒙⟧, not covered in the abstract theory 
 
Let 𝑅 be a commutative ring and 𝐹 a field in all of the following. 
 
Definition D88: Let 𝑅 be a ring and 𝑓 ∈ 𝑅[𝑥]. Write 𝑓 = 𝑎 + 𝑎 𝑥 + 𝑎 𝑥 ⋯.  

 𝑓 is called a power series. 
 Each 𝑎  is called a coefficient.  
 Each 𝑎 𝑥  is called a term.  

  
Definition D89: Let 𝑓 = ∑ 𝑎 𝑥  and 𝑔 = ∑ 𝑏 𝑥  denote some arbitrary 𝑓, 𝑔 ∈ 𝑅⟦𝑥⟧. Then: 

 𝑓 + 𝑔 ≔ ∑ (𝑎 + 𝑏 )𝑥  
 𝑓𝑔 ≔ ∑ 𝑎 𝑥 ∑ 𝑏 𝑥  

 
Theorem T90: Conditions as above. 

 𝑓𝑔 = ∑ ∑ 𝑎 𝑏 𝑥  

 𝑓𝑔 = ∑ ∑ 𝑎 𝑏 𝑥  
 
Theorem T91: Let 𝑓 ∈ 𝑅⟦𝑥⟧ be denoted as above. Then 𝑓 ∈ (𝑅⟦𝑥⟧)∗ iff 𝑎 ∈ 𝑅∗. 
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Definition and Theorems specific to modular arithmetic rings, ℤ ⟨𝒏⟩⁄ , not covered in the abstract theory 
 
Let 𝑎, 𝑏 ∈ ℤ and 𝑛 ∈ ℕ in all of the following. 
 
Definition D92: Define 𝑎 ≡ 𝑏 mod 𝑛 via: 𝑎 ≡ 𝑏 if and only if 𝑛|𝑎 − 𝑏 
 
Theorem T93: The relation ≡ defined above is an equivalence relation. 
 
Definition D94: Write [𝑐]  to denote the equivalence class of 𝑐. 
 
Theorem T95: [𝑐] = {𝑐 + 𝑛𝑘|𝑘 ∈ ℤ} 
 
Theorem T96: 𝑎 ≡ 𝑏 if and only if ⟨𝑛⟩ + 𝑎 = ⟨𝑛⟩ + 𝑏.  
 
Definition D97: Let 𝑓(𝑥) ≡ 𝑎 be an equation mod 𝑛. To solve the equation via brute force means to plug in every value 
of 𝑥 ∈ ℤ  and take note of which are solutions. 
 
Theorem T98: Let 𝑎 ∈ ℤ . Then 𝑎 ∈ (ℤ )∗ iff gcd(𝑎, 𝑛) = 1.  
  


