Definition T1 (Identity): Let *S* be a set with a binary operation \circledast . If for some $e \in S$, $a \circledast e = e \circledast a = a$ for all $a \in S$ then *e* is called an identity under \circledast .

Theorem T2 (Uniqueness of identity): Let *S* be a set with a binary operation \circledast . If $a \circledast e = e \circledast a = a$ and $a \circledast f = f \circledast a = a$ for all $a \in S$, then e = f.

Theorem T3 (Uniqueness of inverses): Let *S* be a set with an identity *e* and an associative binary operation \circledast . Let $a \in S$ and assume $a \circledast b = b \circledast a = e$ as well as $a \circledast c = c \circledast a = e$. Then b = c.

Definition D4 (Ring): A ring is a set of elements with two binary operations, called addition and multiplication, such that:

- + is closed
- + is commutative
- + is associative
- + has an additive identity, we'll call it 0_R .
- Everything in S has an inverse under +, we call them negatives and use the symbol.
- × is closed
- × is associative
- × is distributive over +

Theorem T5 (Uniqueness+ of Identity): Let $e \in R$. If a + e = a for some $a \in R$, then $e = 0_R$.

Theorem T6 (Double Negation): Let $a \in R$. Then -(-a) = a.

Theorem T7 (Additive Cancellation): Let $a, b, c \in R$. If a + b = a + c, then b = c.

Theorem T8 (Zero Multiplication): Let $a, b \in R$. Then $a0_R = 0_R a = 0_R$

Theorem T9 (Moving Negatives): Let $a, b \in R$. Then a(-b) = (-a)b = -(ab).

Theorem T10 (Negative Cancellation): Let $a, b \in R$. Then (-a)(-b) = ab.

Theorem T11 (Addition Equation): Let $a, b \in R$. Then a + x = b always has a unique solution.

Definition and Theorems on Subrings

Definition D12: Let *R* be a ring and $S \subseteq R$. *S* is said to be a <u>subring</u> of *R* if *S* is itself a ring with the same operations as *R*.

Theorem T13 (Subring criterion): Let *R* be a ring, and *S* a subset of *R*. *S* is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$ (Closed under addition)
- 3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)
- 4. $a \in S \Rightarrow -a \in S$ (Closed under additive inverses)

Theorem T14 (Subring criterion, quick): Let *R* be a ring, and *S* a subset of *R*. *S* is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a b \in S$ (Closed under subtraction)
- 3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)

Theorem T15 (Subring criterion, finite): Let *R* be a ring, and *S* a finite subset of *R*. *S* is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

- 1. $S \neq \emptyset$
- 2. $a, b \in S \Rightarrow a + b \in S$ (Closed under addition)
- 3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)

Theorem T16 (Zero in subring): Let R be a ring and S a subring of R. Then $0_S = 0_R$.

Future Theorem That Appears Later:

Let *R* be a ring and *S* a subring of *R*. If $1_R \in S$, then *S* has unity and $1_S = 1_R$.

Definition D17 (Unity): Let *R* be a ring. If *R* contains a multiplicative identity, we call *R* a <u>ring with unity</u>. We write 1_R to denote the identity.

Definition D18 (Multiplicative Inverses): Let R be a ring with unity and $a \in R$ be nonzero. If there is some $b \in R$ such that $ab = 1_R$ and $ba = 1_R$, then a is called <u>invertible</u> or a <u>unit</u>. Because of the uniqueness theorem, we may denote such a b as a^{-1} .

Theorem T19 (Left and right inverses): Let R be a ring with unity and let $a, b_1, b_2 \in R$. If both $b_1a = 1_R$ and $ab_2 = 1_R$ then $b_1 = b_2$. (As a corollary a is invertible and $b_1 = b_2 = a^{-1}$)

Theorem T20 (one sided inverse is an inverse): Let *R* be a ring with unity and let $a \in R$ be a unit. If $ab = 1_R$ for some $b \in R$, then $b = a^{-1}$. Similarly if $ca = 1_R$ for some $c \in R$, then $c = a^{-1}$.

Theorem T21 (Inverse of a product): Let *R* be a ring with unity and let $a, b \in R$ both be units. The product ab is also a unit and $(ab)^{-1} = b^{-1}a^{-1}$.

Theorem T22 (Identity in a subring): Let *R* be a ring and *S* a subring of *R*. If $1_R \in S$, then *S* has unity and $1_S = 1_R$.

Theorem T23 (0 \neq **1)**: Let *R* be a ring with unity that is not {0_{*R*}}. Then 0_{*R*} \neq 1_{*R*}.

Definition D24 (Zero divisor): Let *R* be a ring and $a \in R$ be nonzero. If there is some other nonzero $b \in R$ such that ab = 0 then *a* and *b* are called <u>zero divisors</u>.

Theorem T25 (Cancellation) Let R be a ring and assume $a \in R$ is not a zero divisor. Let $b, c \in R$.

- If ab = ac, then b = c.
- If ba = ca, then b = c.

Theorem T26 (Units and zero divisors): Let *R* be a ring with unity and let $a \in R$.

- If *a* is a unit, it is not a zero divisor.
- If *a* is a zero divisor, it is not a unit.

Definition D27 (Nilpotent): Let R be a ring and $a \in R$. If there is some positive integer n such that

$$\underbrace{a \cdot a \cdot a \cdot \cdots \cdot a}_{n \text{ times}} = 0$$

then *a* is called <u>nilpotent</u>.

Theorem T28 (Nilpotent and zero divisors) Let R be a ring and $a \in R$ be nonzero. If a is nilpotent, then a is a zero divisor.

Definition and Theorems involving Integral Domains

Definition D29 (Commutative): Let *R* be a ring. If multiplication is commutative, then the ring is called a <u>commutative ring</u>.

Definition D30 (Integral Domain): Let *R* be a nontrivial ring. If *R* is commutative and has no zero divisors, then *R* is called an <u>integral domain</u>.

Theorem T31 (Cancellation): Let *R* be an integral domain. The cancellation laws apply to *R*: If ab = ac, then b = c

Theorem T32 (Integral Domain Criterion): Let *R* be ring. If the following are satisfied, then *R* is an integral domain.

- 1. *R* is commutative
- 2. $R \neq \{0_R\}$
- 3. $ab = ac \Rightarrow b = c$ for all $a, b, c \in R$, $a \neq 0_R$.

Definition D33 (Divides): Let *R* be a commutative ring and let $a, b \in R$ with $b \neq 0$. If there is some $k \in R$ such that bk = a, then we say b divides a, that a is a multiple of b, and write b|a.

Theorem T34 (Properties of divides): Let *R* be a commutative ring. As a relation, "divides" is reflexive and transitive in that for all $a, b, c \in R$:

- 1. a|a (If R has unity)
- 2. If a|b and b|c, then a|c.

Definition D35 (Associates): Let *R* be an integral domain with unity. Let $a, b \in R$. If a = bu for some $u \in R^*$, then *a* and *b* are called <u>associates</u>.

Theorem T36 (Properties of associates): Let *R* be an integral domain with unity. "Being associates" is an equivalence relation. In particular for all $a, b, c \in R$:

- 1. a is an associate with a
- 2. If *a* is an associate with *b*, then *b* is an associate with *a*.
- 3. If *a* is an associate with *b* and *b* is an associate with *c*, then *a* is an associate with *c*.

Theorem T37 (Divides & Associates): Let *R* be an integral domain with unity and let $a, b \in R$. Then *a* and *b* are associates iff both a|b and b|a.

Definition D38 (prime): Let *R* be an integral domain and let $a \in R - R^*$ be nonzero. We say that *a* is <u>prime</u> if for all $b, c \in R$: If a|bc, then a|b or a|c

Definition D39 (Irreducible): Let *R* be an integral domain with unity and let $a \in R - R^*$ be nonzero. We say that *a* is <u>irreducible</u> if for all $b, c \in R$: If a = bc, then either $b \in R^*$ or $c \in R^*$

Theorem T40 (Prime implies Irreducible): Let *R* be an integral domain with unity and let $a \in R$ be prime. Then *a* is also irreducible.

Definition and Theorems involving Ideals

Definition D41 (Ideal): Let *R* be a ring and *S* a subring of *R*. We call S an <u>ideal</u> if the following are satisfied:

- $rs \in S$ for all $s \in S$ and $r \in R$
- $sr \in S$ for all $s \in S$ and $r \in R$

Theorem T42 (Ideals are subrings): Let *R* be a ring and *I* an ideal of *R*. Then *I* is a subring.

Theorem T43 (What is $\langle \mathbf{1}_R \rangle$ **?):** Let *R* be a commutative ring with unity. $\langle \mathbf{1}_R \rangle = R$

Definition D44 (Prime Ideal): Let *R* be a commutative ring. An ideal *P* of *R* is called a <u>prime ideal</u> if both:

- $P \neq R$
- If $ab \in P$, then either $a \in P$ or $b \in P$ for all $a, b \in R$.

Definition D45 (Maximal Ideal): Let *R* be a ring with unity. An ideal *M* of *R* is called a <u>maximal ideal</u> if both:

- $M \neq R$
- If $I \supseteq M$ is an ideal of I, then either I = M, or I = R.

Theorem T46 (Ideals are contained in a maximal ideal): Let *R* be a ring with unity and *I* an ideal. Then there is some maximal ideal *M* such that $I \subseteq M$.

Theorem T47 (Maximal \Rightarrow **Prime):** Let *R* be a commutative ring with unity. Every maximal ideal of *R* is a prime ideal.

Definition D48 (Finitely Generated): Let R be a commutative ring and I an ideal of R. We call I <u>finitely generated</u> if everything in I can be written sums and products of things in R with things in some finite set $\{a_1, ..., a_n\}$:

$$I = \langle a_1, \dots, a_n \rangle \coloneqq \{a_1r_1 + a_2r_2 + \dots + a_nr_n | r_1, \dots, r_n \in R\}$$

Definition D49 (Principal): Let R be a commutative ring and I an ideal of R. We call I <u>principal</u> and use the notation below, if everything in I can be written as a multiple of some single element:

$$I = \langle a \rangle \coloneqq \{ar | r \in R\}$$

Definition D50 (PID): Let *R* be an integral domain. If every ideal of *R* is principal, we call *R* a <u>principal ideal domain</u>.

Theorem T51 (Connection between principal ideals and divisibility): Let *R* be a commutative ring with unity. Fix two elements $a, b \in R$.

- (a) If $\langle a \rangle \subseteq \langle b \rangle$, then a = bt for some $t \in R$.
- (b) If a = bt for some $t \in R$, then $\langle a \rangle \subseteq \langle b \rangle$.

Theorem T52 (Connection between principal ideals and the whole ring): Let *R* be a commutative ring with unity and $r \in R$.

- (a) If $\langle r \rangle = R$, then r is a unit.
- (b) If r is a unit, then $\langle r \rangle = R$.

Theorem T53 (Connection between principal ideals and associates): Let *R* be an integral domain with unity and let $r, s \in R$.

- (a) If $\langle r \rangle = \langle s \rangle$, then r and s are associates.
- (b) If *r* and *s* are associates, then $\langle r \rangle = \langle s \rangle$.

Definition D54 (Coset): Let *R* be a ring, *S* a subring of *R*, and $a \in R$. The set "*S* + *a*" is called the "<u>ath coset of S in R"</u> $S + a \coloneqq \{s + a | s \in S\}$

Definition D55 (*R* **mod** *I***):** Let *R* be a commutative right with identity and *I* an ideal. The <u>quotient ring</u> of *R* mod *I* is the collection of cosets of *I* as below, and addition and multiplication are defined as follows.

$$R/I \coloneqq \{I + r | r \in R\}$$

(I + r₁) + (I + r₂) := I + (r₁ + r₂)
(I + r₁)(I + r₂) := I + (r₁r₂)

Theorem T56 (Basic properties of R/I): Let R be a commutative right with unity and I an ideal.

- 1. I + a = I + b iff $a b \in I$
- 2. Addition of cosets is well defined.
- 3. Multiplication of cosets is well defined.
- 4. R/I is a ring.

Theorem T57 (Relating quotient rings to prime ideals): Let R be a commutative ring with unity and I an ideal of R. The quotient ring R/I is an integral domain if and only if I is prime.

Future Theorems That Appears Later:

Let *R* be a commutative ring with unity. and *I* an ideal of *R*. The quotient ring R/I is a field if and only if *I* is maximal. Let *R* be a commutative ring with unity. *R* is a field if and only if its only ideals are $\{0\}$ and *R* itself. **Definition D58 (Irreducible):** Let *R* be an integral domain with unity and let $a \in R - R^*$ be nonzero. We say that *a* is <u>irreducible</u> if for all $b, c \in R$: If a = bc, then either $b \in R^*$ or $c \in R^*$

Definition D59 (Irreducible Factorization): Let R be an integral domain with unity and let $a \in R$. If we can write $a = p_1 p_2 \cdots p_n$ for some $n \in \mathbb{N}$ where each p_k is irreducible, then we say that a has an <u>irreducible factorization</u>.

Definition D60 (Uniqueness): Let *R* be an integral domain with unity and let $a \in R$ have an irreducible factorization. Suppose we can write

$$a = p_1 p_2 \cdots p_n$$
$$a = q_1 q_2 \cdots q_n$$

for some $n, m \in \mathbb{N}$ where each p_i and q_j are irreducible. We say that the factorization is <u>unique up to associates</u> if n = m and there is some re-numbering of the factors so that $p_k = q_k$ for each k.

Definition D61 (UFD): Let R be an integral domain with unity. If every nonzero nonunit element of R has a unique factorization, we call R a <u>Unique Factorization Domain</u>.

Theorem T62 (Irreducible \Rightarrow **Prime):** Let *R* be a unique factorization domain. Then any element of *R* is prime iff it is irreducible.

Theorem T63 (GCD from factorization): Let R be a unique factorization domain. Then gcd(a, b) may be computed by taking their prime factorizations and looking at what is in common.

Theorem T64 (PID \Rightarrow **UFD):** Let *R* be a principal ideal domain. Then *R* is a unique factorization domain.

Definition and Theorems involving Euclidean Domains

Definition D65 (Norm): Let *R* be an integral domain with unity. A function $N: R \to \mathbb{N}$ with $N(0_R) = 0$ is called a <u>norm</u>. Remark: This is very different from the notion of a norm in other subjects such as advanced calculus.

Definition D66 (ED): Let *R* be an integral domain with unity. We call *R* a <u>Euclidean Domain</u> if there is a norm *N* on *R* such that for any two elements $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ such that:

$$a = qb + r$$

 $r = 0_R$ or N(r) < N(b)

Theorem T67 (EA, EEA): Let *R* be a Euclidean Domain. Both the Euclidean Algorithm and Extended Euclidean Algorithm can be used in *R*.

Theorem T68 (ED\RightarrowPID): Let *R* be a Euclidean Domain. Then *R* is a principal ideal domain.

Definition and Theorems involving Fields

Definition D69 (Field): Let *R* be an integral domain with unity. If every nonzero element of *R* is invertible, *R* is called a <u>field</u>.

Theorem T70 (\mathbb{Z}_n vs \mathbb{Z}_p): The ring \mathbb{Z}_n is a field if and only if *n* is prime, in which case we typically use *p* instead of *n*.

Theorem T71 (No zero divisors): Let *R* be a field. Then *R* does not have any zero divisors, irreducibles, or primes.

Theorem T72 (Finite ID): Let R be a finite integral domain. Then R is a field. Note: This applies even if we don't assume R has unity, but the proof is a bit more involved than our proof that assumed unity.

Theorem T73 (Fields and Quotient Rings): Let R be a commutative ring with unity and I an ideal of R. The quotient ring R/I is a field if and only if I is maximal.

Theorem T74 (Ideals in Fields): Let R be a commutative ring with unity. R is a field if and only if its only ideals are $\{0\}$ and R itself.

Theorem T75 (Field \Rightarrow **ED):** Let *F* be a field. Then *F* is also a Euclidean Domain.

Definition and Theorems specific to polynomial rings, R[x], not covered in the abstract theory

Let R be a commutative ring and F a field in all of the following.

Definition D76: Let *R* be a ring and $f \in R[x]$. Write $f = a_0 + a_1x + \dots + a_nx^n$ where $a_n \neq 0$.

- *f* is called a <u>polynomial</u>.
- *n* is called the <u>degree</u> of *f*.
 - Unless f = 0 in which case $deg(f) \coloneqq -\infty$
- Each a_i is called a <u>coefficient</u>.
- Each $a_i x^i$ is called a <u>term</u>.

Definition D77: Let $f = \sum_{i=0}^{n} a_i x^i$ and $g = \sum_{j=0}^{m} b_j x^j$ denote some arbitrary $f, g \in R[x]$. Then:

- $f + g \coloneqq \sum_{k=0}^{\max(n,m)} (a_k + b_k) x^k$
- $fg \coloneqq (\sum_{i=0}^n a_i x^i) (\sum_{j=0}^m b_j x^j)$

Theorem T78: Conditions as above.

- $fg = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j x^{i+j}$
- $fg = \sum_{d=0}^{n+m} \sum_{k=0}^{d} a_k b_{d-k} x^d$

Definition D79: Let $f \in R[x]$. If $f \in R$, we call f a <u>constant polynomial</u>.

Theorem T80: Let $a, f \in F[x]$ such that a is a constant polynomial. Then a|f.

Definition D81: Let $f \in R[x]$ and $a \in R$. If f(a) = 0 then a is called a <u>root</u> of f.

Theorem T82: Let $f \in F[x]$ and $a \in F$. Then (x - a)|f if and only if a is a root of f.

Theorem T83: Let $0 \neq f \in F[x]$ have degree *n*. Then *f* has at most *n* roots

Theorem T84 (Gauss's Lemma): Let $f \in \mathbb{Z}[x]$. If f is reducible in $\mathbb{Q}[x]$, then f is reducible in $\mathbb{Z}[x]$.

Theorem T85 (Rational Root Theorem): Let $f \in \mathbb{Z}[x]$, and write $f = a_0 + a_1x + \dots + a_nx^n$. If p, and q are coprime integers such that $f\left(\frac{p}{a}\right) = 0$, then $q|a_n$ and $p|a_0$.

Theorem T86 (Eisenstein's Criterion): Let $f \in \mathbb{Z}[x]$, and write $f = a_0 + a_1x + \dots + a_nx^n$. Let p be a prime number such that:

- $p|a_k$ for k = 0, 1, 2, ..., n-1.
- $p \nmid a_n$.
- $p^2 \nmid a_0$

Then f is irreducible

Theorem T87: Let $f \in \mathbb{Q}[x]$ or $f \in \mathbb{Z}[x]$ be a polynomial of degree at most 3. Then f is reducible if and only if f has a root in \mathbb{Q} .

Definition and Theorems specific to power series rings, R[x], not covered in the abstract theory

Let R be a commutative ring and F a field in all of the following.

Definition D88: Let *R* be a ring and $f \in R[x]$. Write $f = a_0 + a_1x + a_2x^2 \cdots$.

- *f* is called a <u>power series</u>.
- Each a_i is called a <u>coefficient</u>.
- Each $a_i x^i$ is called a <u>term</u>.

Definition D89: Let $f = \sum_{i=0}^{\infty} a_i x^i$ and $g = \sum_{j=0}^{\infty} b_j x^j$ denote some arbitrary $f, g \in R[x]$. Then:

- $f + g \coloneqq \sum_{k=0}^{\infty} (a_k + b_k) x^k$
- $fg \coloneqq \left(\sum_{i=0}^{\infty} a_i x^i\right) \left(\sum_{j=0}^{\infty} b_j x^j\right)$

Theorem T90: Conditions as above.

- $fg = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_i b_j x^{i+j}$
- $fg = \sum_{d=0}^{\infty} \sum_{k=0}^{d} a_k b_{d-k} x^d$

Theorem T91: Let $f \in R[[x]]$ be denoted as above. Then $f \in (R[[x]])^*$ iff $a_0 \in R^*$.

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$ in all of the following.

Definition D92: Define $a \equiv b \mod n$ via: $a \equiv b$ if and only if n|a - b

Theorem T93: The relation \equiv defined above is an equivalence relation.

Definition D94: Write $[c]_n$ to denote the equivalence class of c.

Theorem T95: $[c]_n = \{c + nk | k \in \mathbb{Z}\}$

Theorem T96: $a \equiv_n b$ if and only if $\langle n \rangle + a = \langle n \rangle + b$.

Definition D97: Let $f(x) \equiv a$ be an equation mod n. To solve the equation via <u>brute force</u> means to plug in every value of $x \in \mathbb{Z}_n$ and take note of which are solutions.

Theorem T98: Let $a \in \mathbb{Z}_n$. Then $a \in (\mathbb{Z}_n)^*$ iff gcd(a, n) = 1.