Definition T1 (Identity): Let S be a set with a binary operation \circledast. If for some $e \in S, a \circledast e=e \circledast a=a$ for all $a \in S$ then e is called an identity under \circledast.

Theorem T2 (Uniqueness of identity): Let S be a set with a binary operation \circledast. If $a \circledast e=e \circledast a=a$ and $a \circledast f=f \circledast a=a$ for all $a \in S$, then $e=f$.

Theorem T3 (Uniqueness of inverses): Let S be a set with an identity e and an associative binary operation \circledast. Let $a \in S$ and assume $a \circledast b=b \circledast a=e$ as well as $a \circledast c=c \circledast a=e$. Then $b=c$.

Definition D4 (Ring): A ring is a set of elements with two binary operations, called addition and multiplication, such that:

- + is closed
- + is commutative
- + is associative
- + has an additive identity, we'll call it 0_{R}.
- Everything in S has an inverse under + , we call them negatives and use the - symbol.
- x is closed
- x is associative
- $\quad X$ is distributive over +

Theorem T5 (Uniqueness+ of Identity): Let $e \in R$. If $a+e=a$ for some $a \in R$, then $e=0_{R}$.
Theorem T6 (Double Negation): Let $a \in R$. Then $-(-a)=a$.
Theorem T7 (Additive Cancellation): Let $a, b, c \in R$. If $a+b=a+c$, then $b=c$.

Theorem T8 (Zero Multiplication): Let $a, b \in R$. Then $a 0_{R}=0_{R} a=0_{R}$
Theorem T9 (Moving Negatives): Let $a, b \in R$. Then $a(-b)=(-a) b=-(a b)$.

Theorem T10 (Negative Cancellation): Let $a, b \in R$. Then $(-a)(-b)=a b$.
Theorem T11 (Addition Equation): Let $a, b \in R$. Then $a+x=b$ always has a unique solution.

Definition D12: Let R be a ring and $S \subseteq R$. S is said to be a subring of R if S is itself a ring with the same operations as R.

Theorem T13 (Subring criterion): Let R be a ring, and S a subset of $R . S$ is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

1. $S \neq \varnothing$
2. $a, b \in S \Rightarrow a+b \in S$ (Closed under addition)
3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)
4. $a \in S \Rightarrow-a \in S$ (Closed under additive inverses)

Theorem T14 (Subring criterion, quick): Let R be a ring, and S a subset of R. S is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

1. $S \neq \varnothing$
2. $a, b \in S \Rightarrow a-b \in S$ (Closed under subtraction)
3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)

Theorem T15 (Subring criterion, finite): Let R be a ring, and S a finite subset of R. S is a subring if and only if all of the following are satisfied for all elements $a, b \in S$:

1. $S \neq \varnothing$
2. $a, b \in S \Rightarrow a+b \in S$ (Closed under addition)
3. $a, b \in S \Rightarrow a \cdot b \in S$ (Closed under multiplication)

Theorem T16 (Zero in subring): Let R be a ring and S a subring of R. Then $0_{S}=0_{R}$.

Future Theorem That Appears Later:

Let R be a ring and S a subring of R. If $1_{R} \in S$, then S has unity and $1_{S}=1_{R}$.

Definition and Theorems involving $\mathbf{1}_{\boldsymbol{R}}$

Definition D17 (Unity): Let R be a ring. If R contains a multiplicative identity, we call R a ring with unity. We write 1_{R} to denote the identity.

Definition D18 (Multiplicative Inverses): Let R be a ring with unity and $a \in R$ be nonzero. If there is some $b \in R$ such that $a b=1_{R}$ and $b a=1_{R}$, then a is called invertible or a unit.
Because of the uniqueness theorem, we may denote such a b as a^{-1}.

Theorem T19 (Left and right inverses): Let R be a ring with unity and let $a, b_{1}, b_{2} \in R$. If both $b_{1} a=1_{R}$ and $a b_{2}=1_{R}$ then $b_{1}=b_{2}$.
(As a corollary a is invertible and $b_{1}=b_{2}=a^{-1}$)
Theorem T20 (one sided inverse is an inverse): Let R be a ring with unity and let $a \in R$ be a unit. If $a b=1_{R}$ for some $b \in R$, then $b=a^{-1}$.
Similarly if $c a=1_{R}$ for some $c \in R$, then $c=a^{-1}$.
Theorem T21 (Inverse of a product): Let R be a ring with unity and let $a, b \in R$ both be units. The product $a b$ is also a unit and $(a b)^{-1}=b^{-1} a^{-1}$.

Theorem T22 (Identity in a subring): Let R be a ring and S a subring of R. If $1_{R} \in S$, then S has unity and $1_{S}=1_{R}$.
Theorem $\mathbf{T} 23(0 \neq 1)$: Let R be a ring with unity that is not $\left\{0_{R}\right\}$. Then $0_{R} \neq 1_{R}$.
Definition D24 (Zero divisor): Let R be a ring and $a \in R$ be nonzero. If there is some other nonzero $b \in R$ such that $a b=0$ then a and b are called zero divisors.

Theorem T25 (Cancellation) Let R be a ring and assume $a \in R$ is not a zero divisor. Let $b, c \in R$.

- If $a b=a c$, then $b=c$.
- If $b a=c a$, then $b=c$.

Theorem T26 (Units and zero divisors): Let R be a ring with unity and let $a \in R$.

- If a is a unit, it is not a zero divisor.
- If a is a zero divisor, it is not a unit.

Definition D27 (Nilpotent): Let R be a ring and $a \in R$. If there is some positive integer n such that

$$
\underbrace{a \cdot a \cdot a \cdot \cdots \cdot a}_{n \text { times }}=0
$$

then a is called nilpotent.
Theorem T28 (Nilpotent and zero divisors) Let R be a ring and $a \in R$ be nonzero. If a is nilpotent, then a is a zero divisor.

Definition and Theorems involving Integral Domains

Definition D29 (Commutative): Let R be a ring. If multiplication is commutative, then the ring is called a commutative ring.

Definition D30 (Integral Domain): Let R be a nontrivial ring. If R is commutative and has no zero divisors, then R is called an integral domain.

Theorem T31 (Cancellation): Let R be an integral domain. The cancellation laws apply to R :
If $a b=a c$, then $b=c$

Theorem T32 (Integral Domain Criterion): Let R be ring. If the following are satisfied, then R is an integral domain.

1. R is commutative
2. $R \neq\left\{0_{R}\right\}$
3. $a b=a c \Rightarrow b=c$ for all $a, b, c \in R, a \neq 0_{R}$.

Definition D33 (Divides): Let R be a commutative ring and let $a, b \in R$ with $b \neq 0$. If there is some $k \in R$ such that $b k=a$, then we say $b \underline{\text { divides }} \mathrm{a}$, that a is a multiple of b, and write $b \mid a$.

Theorem T34 (Properties of divides): Let R be a commutative ring. As a relation, "divides" is reflexive and transitive in that for all $a, b, c \in R$:

1. $a \mid a$ (If R has unity)
2. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Definition D35 (Associates): Let R be an integral domain with unity. Let $a, b \in R$. If $a=b u$ for some $u \in R^{*}$, then a and b are called associates.

Theorem T36 (Properties of associates): Let R be an integral domain with unity. "Being associates" is an equivalence relation. In particular for all $a, b, c \in R$:

1. a is an associate with a
2. If a is an associate with b, then b is an associate with a.
3. If a is an associate with b and b is an associate with c, then a is an associate with c.

Theorem T37 (Divides \& Associates): Let R be an integral domain with unity and let $a, b \in R$. Then a and b are associates iff both $a \mid b$ and $b \mid a$.

Definition D38 (prime): Let R be an integral domain and let $a \in R-R^{*}$ be nonzero. We say that a is prime if for all $b, c \in R$: If $a \mid b c$, then $a \mid b$ or $a \mid c$

Definition D39 (Irreducible): Let R be an integral domain with unity and let $a \in R-R^{*}$ be nonzero. We say that a is irreducible if for all $b, c \in R$: If $a=b c$, then either $b \in R^{*}$ or $c \in R^{*}$

Theorem T40 (Prime implies Irreducible): Let R be an integral domain with unity and let $a \in R$ be prime. Then a is also irreducible.

Definition and Theorems involving Ideals

Definition D41 (Ideal): Let R be a ring and S a subring of R. We call S an ideal if the following are satisfied:

- $\quad r s \in S$ for all $s \in S$ and $r \in R$
- $\quad s r \in S$ for all $s \in S$ and $r \in R$

Theorem T42 (Ideals are subrings): Let R be a ring and I an ideal of R. Then I is a subring.

Theorem T43 (What is $\left\langle\mathbf{1}_{\boldsymbol{R}}\right\rangle$?): Let R be a commutative ring with unity. $\left\langle 1_{R}\right\rangle=R$

Definition D44 (Prime Ideal): Let R be a commutative ring. An ideal P of R is called a prime ideal if both:

- $\quad P \neq R$
- If $a b \in P$, then either $a \in P$ or $b \in P$ for all $a, b \in R$.

Definition D45 (Maximal Ideal): Let R be a ring with unity. An ideal M of R is called a maximal ideal if both:

- $\quad M \neq R$
- If $I \supseteq M$ is an ideal of I, then either $I=M$, or $I=R$.

Theorem T46 (Ideals are contained in a maximal ideal): Let R be a ring with unity and I an ideal. Then there is some maximal ideal M such that $I \subseteq M$.

Theorem T47 (Maximal \Rightarrow Prime): Let R be a commutative ring with unity. Every maximal ideal of R is a prime ideal.

Definition D48 (Finitely Generated): Let R be a commutative ring and I an ideal of R. We call I finitely generated if everything in I can be written sums and products of things in R with things in some finite set $\left\{a_{1}, \ldots, a_{n}\right\}$:

$$
I=\left\langle a_{1}, \ldots, a_{n}\right\rangle:=\left\{a_{1} r_{1}+a_{2} r_{2}+\cdots+a_{n} r_{n} \mid r_{1}, \ldots, r_{n} \in R\right\}
$$

Definition D49 (Principal): Let R be a commutative ring and I an ideal of R. We call I principal and use the notation below, if everything in I can be written as a multiple of some single element:

$$
I=\langle a\rangle:=\{a r \mid r \in R\}
$$

Definition D50 (PID): Let R be an integral domain. If every ideal of R is principal, we call R a principal ideal domain.

Theorem T51 (Connection between principal ideals and divisibility): Let R be a commutative ring with unity. Fix two elements $a, b \in R$.
(a) If $\langle a\rangle \subseteq\langle b\rangle$, then $a=b t$ for some $t \in R$.
(b) If $a=b t$ for some $t \in R$, then $\langle a\rangle \subseteq\langle b\rangle$.

Theorem T52 (Connection between principal ideals and the whole ring): Let R be a commutative ring with unity and $r \in R$.
(a) If $\langle r\rangle=R$, then r is a unit.
(b) If r is a unit, then $\langle r\rangle=R$.

Theorem T53 (Connection between principal ideals and associates): Let R be an integral domain with unity and let $r, s \in R$.
(a) If $\langle r\rangle=\langle s\rangle$, then r and s are associates.
(b) If r and s are associates, then $\langle r\rangle=\langle s\rangle$.

Definition D54 (Coset): Let R be a ring, S a subring of R, and $a \in R$. The set " $S+a$ " is called the " $\mathrm{a}^{\text {th }}$ coset of S in R "

$$
S+a:=\{s+a \mid s \in S\}
$$

Definition $\mathbf{D} 55(R \bmod I)$: Let R be a commutative right with identity and I an ideal. The quotient ring of $R \bmod I$ is the collection of cosets of I as below, and addition and multiplication are defined as follows.

$$
\begin{gathered}
R / I:=\{I+r \mid r \in R\} \\
\left(I+r_{1}\right)+\left(I+r_{2}\right):=I+\left(r_{1}+r_{2}\right) \\
\left(I+r_{1}\right)\left(I+r_{2}\right):=I+\left(r_{1} r_{2}\right)
\end{gathered}
$$

Theorem T56 (Basic properties of R / I): Let R be a commutative right with unity and I an ideal.

1. $I+a=I+b$ iff $a-b \in I$
2. Addition of cosets is well defined.
3. Multiplication of cosets is well defined.
4. R / I is a ring.

Theorem T57 (Relating quotient rings to prime ideals): Let R be a commutative ring with unity and I an ideal of R. The quotient ring R / I is an integral domain if and only if I is prime.

Future Theorems That Appears Later:

Let R be a commutative ring with unity. and I an ideal of R. The quotient ring R / I is a field if and only if I is maximal. Let R be a commutative ring with unity. R is a field if and only if its only ideals are $\{0\}$ and R itself.

Definition and Theorems involving Unique Factorization Domains

Definition D58 (Irreducible): Let R be an integral domain with unity and let $a \in R-R^{*}$ be nonzero. We say that a is irreducible if for all $b, c \in R:$ If $a=b c$, then either $b \in R^{*}$ or $c \in R^{*}$

Definition D59 (Irreducible Factorization): Let R be an integral domain with unity and let $a \in R$. If we can write $a=$ $p_{1} p_{2} \cdots p_{n}$ for some $n \in \mathbb{N}$ where each p_{k} is irreducible, then we say that a has an irreducible factorization.

Definition D60 (Uniqueness): Let R be an integral domain with unity and let $a \in R$ have an irreducible factorization. Suppose we can write

$$
\begin{aligned}
& a=p_{1} p_{2} \cdots p_{n} \\
& a=q_{1} q_{2} \cdots q_{n}
\end{aligned}
$$

for some $n, m \in \mathbb{N}$ where each p_{i} and q_{j} are irreducible. We say that the factorization is unique up to associates if $n=$ m and there is some re-numbering of the factors so that $p_{k}=q_{k}$ for each k.

Definition D61 (UFD): Let R be an integral domain with unity. If every nonzero nonunit element of R has a unique factorization, we call R a Unique Factorization Domain.

Theorem T62 (Irreducible \Rightarrow Prime): Let R be a unique factorization domain. Then any element of R is prime iff it is irreducible.

Theorem T63 (GCD from factorization): Let R be a unique factorization domain. Then $\operatorname{gcd}(a, b)$ may be computed by taking their prime factorizations and looking at what is in common.

Theorem $\mathbf{T 6 4}$ (PID \Rightarrow UFD): Let R be a principal ideal domain. Then R is a unique factorization domain.

Definition and Theorems involving Euclidean Domains

Definition D65 (Norm): Let R be an integral domain with unity. A function $N: R \rightarrow \mathbb{N}$ with $N\left(0_{R}\right)=0$ is called a norm. Remark: This is very different from the notion of a norm in other subjects such as advanced calculus.

Definition D66 (ED): Let R be an integral domain with unity. We call R a Euclidean Domain if there is a norm N on R such that for any two elements $a, b \in R$ with $b \neq 0$, there exists $q, r \in R$ such that:

$$
a=q b+r
$$

$r=0_{R}$ or $N(r)<N(b)$

Theorem T67 (EA, EEA): Let R be a Euclidean Domain. Both the Euclidean Algorithm and Extended Euclidean Algorithm can be used in R.

Theorem T 68 (ED $\Rightarrow \mathrm{PID})$: Let R be a Euclidean Domain. Then R is a principal ideal domain.

Definition and Theorems involving Fields

Definition D69 (Field): Let R be an integral domain with unity. If every nonzero element of R is invertible, R is called a field.

Theorem $\mathbb{T} 70\left(\mathbb{Z}_{n}\right.$ vs $\left.\mathbb{Z}_{p}\right)$: The ring \mathbb{Z}_{n} is a field if and only if n is prime, in which case we typically use p instead of n.

Theorem $\mathbf{T 7 1}$ (No zero divisors): Let R be a field. Then R does not have any zero divisors, irreducibles, or primes.

Theorem T72 (Finite ID): Let R be a finite integral domain. Then R is a field.
Note: This applies even if we don't assume R has unity, but the proof is a bit more involved than our proof that assumed unity.

Theorem T73 (Fields and Quotient Rings): Let R be a commutative ring with unity and I an ideal of R. The quotient ring R / I is a field if and only if I is maximal.

Theorem T74 (Ideals in Fields): Let R be a commutative ring with unity. R is a field if and only if its only ideals are $\{0\}$ and R itself.

Theorem T 75 (Field $\Rightarrow \mathrm{ED}$): Let F be a field. Then F is also a Euclidean Domain.

Definition and Theorems specific to polynomial rings, $R[x]$, not covered in the abstract theory

Let R be a commutative ring and F a field in all of the following.

Definition D76: Let R be a ring and $f \in R[x]$. Write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ where $a_{n} \neq 0$.

- $\quad f$ is called a polynomial.
- $\quad n$ is called the degree of f.
- Unless $f=0$ in which case $\operatorname{deg}(f):=-\infty$
- Each a_{i} is called a coefficient.
- Each $a_{i} x^{i}$ is called a term.

Definition D77: Let $f=\sum_{i=0}^{n} a_{i} x^{i}$ and $g=\sum_{j=0}^{m} b_{j} x^{j}$ denote some arbitrary $f, g \in R[x]$. Then:

- $f+g:=\sum_{k=0}^{\max (n, m)}\left(a_{k}+b_{k}\right) x^{k}$
- $f g:=\left(\sum_{i=0}^{n} a_{i} x^{i}\right)\left(\sum_{j=0}^{m} b_{j} x^{j}\right)$

Theorem T78: Conditions as above.

- $f g=\sum_{i=0}^{n} \sum_{j=0}^{m} a_{i} b_{j} x^{i+j}$
- $f g=\sum_{d=0}^{n+m} \sum_{k=0}^{d} a_{k} b_{d-k} x^{d}$

Definition D79: Let $f \in R[x]$. If $f \in R$, we call f a constant polynomial.

Theorem T80: Let $a, f \in F[x]$ such that a is a constant polynomial. Then $a \mid f$.

Definition D81: Let $f \in R[x]$ and $a \in R$. If $f(a)=0$ then a is called a root of f.

Theorem T82: Let $f \in F[x]$ and $a \in F$. Then $(x-a) \mid f$ if and only if a is a root of f.

Theorem T83: Let $0 \neq f \in F[x]$ have degree n. Then f has at most n roots

Theorem $\mathbf{T 8 4}$ (Gauss's Lemma): Let $f \in \mathbb{Z}[x]$. If f is reducible in $\mathbb{Q}[x]$, then f is reducible in $\mathbb{Z}[x]$.

Theorem T85 (Rational Root Theorem): Let $f \in \mathbb{Z}[x]$, and write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. If p, and q are coprime integers such that $f\left(\frac{p}{q}\right)=0$, then $q \mid a_{n}$ and $p \mid a_{0}$.
Theorem $\mathbf{T 8 6}$ (Eisenstein's Criterion): Let $f \in \mathbb{Z}[x]$, and write $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$. Let p be a prime number such that:

- $p \mid a_{k}$ for $k=0,1,2, \ldots, n-1$.
- $p \nmid a_{n}$.
- $p^{2} \nmid a_{0}$

Then f is irreducible

Theorem T87: Let $f \in \mathbb{Q}[x]$ or $f \in \mathbb{Z}[x]$ be a polynomial of degree at most 3 . Then f is reducible if and only if f has a root in \mathbb{Q}.

Let R be a commutative ring and F a field in all of the following.
Definition D88: Let R be a ring and $f \in R[x]$. Write $f=a_{0}+a_{1} x+a_{2} x^{2} \cdots$.

- f is called a power series.
- Each a_{i} is called a coefficient.
- Each $a_{i} x^{i}$ is called a term.

Definition D89: Let $f=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=0}^{\infty} b_{j} x^{j}$ denote some arbitrary $f, g \in R \llbracket x \rrbracket$. Then:

- $f+g:=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}$
- $f g:=\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right)$

Theorem T90: Conditions as above.

- $f g=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i} b_{j} x^{i+j}$
- $f g=\sum_{d=0}^{\infty} \sum_{k=0}^{d} a_{k} b_{d-k} x^{d}$

Theorem T91: Let $f \in R \llbracket x \rrbracket$ be denoted as above. Then $f \in(R \llbracket x \rrbracket)^{*}$ iff $a_{0} \in R^{*}$.

Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$ in all of the following.

Definition D92: Define $a \equiv b$ mod n via: $a \equiv b$ if and only if $n \mid a-b$

Theorem T93: The relation \equiv defined above is an equivalence relation.

Definition D94: Write $[c]_{n}$ to denote the equivalence class of c.
Theorem T95: $[c]_{n}=\{c+n k \mid k \in \mathbb{Z}\}$
Theorem T96: $a \equiv_{n} b$ if and only if $\langle n\rangle+a=\langle n\rangle+b$.
Definition D97: Let $f(x) \equiv a$ be an equation $\bmod n$. To solve the equation via brute force means to plug in every value of $x \in \mathbb{Z}_{n}$ and take note of which are solutions.

Theorem T98: Let $a \in \mathbb{Z}_{n}$. Then $a \in\left(\mathbb{Z}_{n}\right)^{*} \operatorname{iff} \operatorname{gcd}(a, n)=1$.

